

BIRLA CORPORATION LIMITED

Chanderia Cement Works, Chittorgarh

M.P. Birla Group Overview

Birla Corporation Limited is the flagship Company of the M.P. Birla Group. Incorporated as Birla Jute Manufacturing Company Limited in 1919, it was Late **Mr. Madhav Prasad Birla** who gave shape to it.

Mr Harsh V Lodha is now Chairman of the Company.

Installed Capacity				
PRODUCT	INSTALLED CAPACITY			
Cement	20.0 Million Tons			
Jute Goods	52,631 Metric Tons			
Iron & Steel Casting	3,750 Metric Tons			

Cement Division of Birla Corporation Limited

Integrated Plants

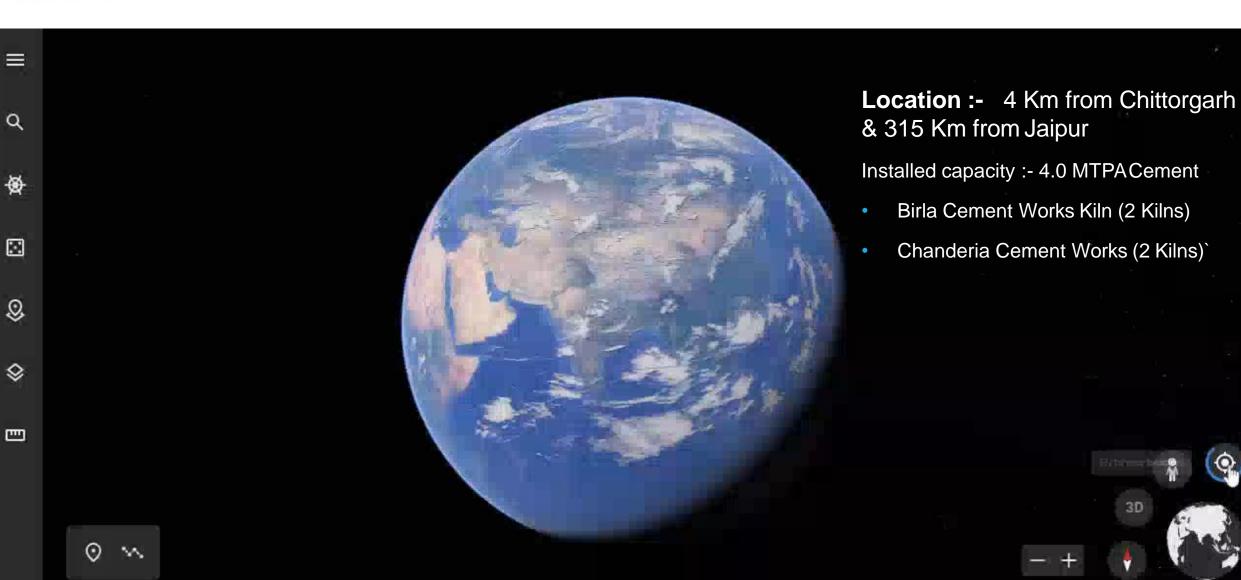
Chanderia (Rajasthan) Maihar (Madhya Pradesh) Mukutban (Maharashtra) Satna (Madhya Pradesh)

Grinding Units

Butibori (Maharashtra) Durgapur (West Bengal) Kundanganj (Uttar Pradesh) Raebareli (Uttar Pradesh)

Our Products

INSPIRED BY LEGACY, DRIVEN BY QUALITY



BCL – Chanderia Unit Location

4,000 km

Camera: 20,828 km 22°42'01"N 85°28'04"E

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Landsat / Copernicus IBCAO U.S. Geological Survey

Chanderia Unit - Plant details

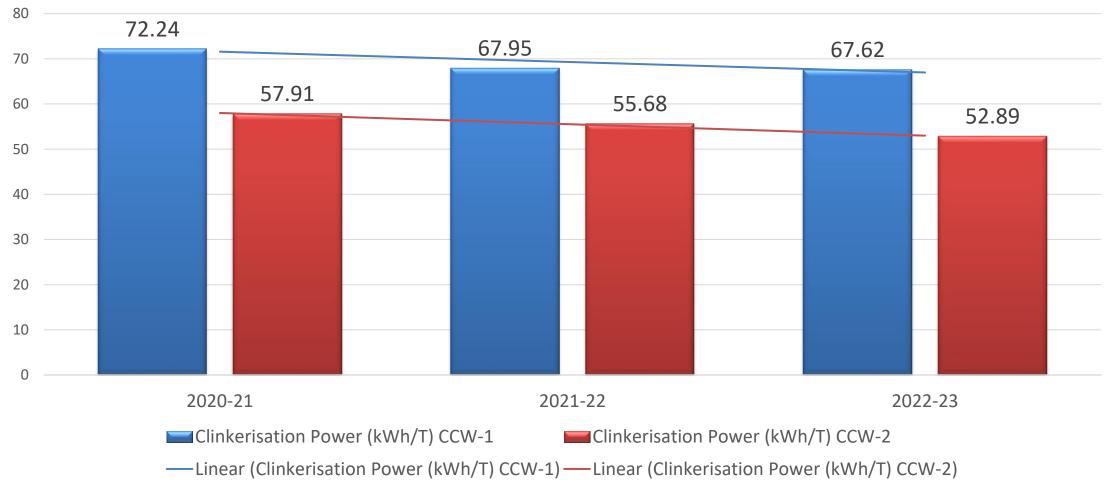
S. No.	P	lant	Year	Make		nstalled acity (TPD)	Co	resent apacity (TPD)					
A.	A. Clinkerization – with pet-coke												
1.		Kiln-1	1967	FLS / L & T		600		1050	Last up	-gradation was done in 1	991-92 by L	& T.	
2.	BCW	Kiln-2	1971	FLS / L & T		600	1050			Ins are not in operation ney run only on specific r		_	manufacturing
3.	0011	Kiln-1	1986	FLS		2500		3850	Last up	Last up-gradation was done in 2		2009 by M/s Atec.	
4.	CCW	Kiln-2 (NCCW)	2012	FLS		3600		5800		Last major upgradation (NCCW M/s FLS.		roject) was done	in Sept. '21 by
S. No.		Plant		Туре	Make	Rated Capa @ 3400 Bl.	-	S. No.	Plant		Туре	Make	Rated Capacity
B.	Ceme	nt grindin	g					C.	Packing	Plant			
1.	BCW	CM	1-1	Ball Mill	FLS	45 TPH		1.	BCW	Packer no. 1, 2 & 3	8-spout packer		120 TPH each
2.	BCV	CM	1-2	Dan Iviiii	FLS	45 TPH					•	FLS	
3.		CM	1-1	Ball Mill	TKII	315 TPF	I	2.	CCW	Packer no. 6 & 7	16-spout packer	Ventomatic	240 TPH each
4.	CCW	CM	1-2	+ Polycom	TKII	325 TPH	l	3.	CCVV	Packer no. 1, 2, 3, 4 & 5	8-spout packer		120 TPH each

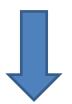
Energy Consumption Overview

Description	LIONA	Consumption During Years				
	UOM	2020-2021	2021-22	2022-23		
Total Thermal Energy Consumption	(Million Kcal)	2117260	2044502	2058769		
Total Electricity consumption	Million kWh	219.35	259.65	289.57		
Electricity Purchased from Grid	Lakh kWh	483.02	1121.47	2099.99		
Electricity Exported to Grid/Colony/Others from CPP	Lakh kWh	277.17	157.23	153.68		
Total Energy Consumed (Thermal+ Electrical)	(TOE)	2050574	2082206	2198756		
Specific Energy Consumption(Without Normalization)	(TOE)	0.0649	0.0610	0.0593		
Specific Energy Consumption (Normalized)	(TOE)	<mark>0.0633</mark>	<mark>0.0613</mark>	<mark>0.0593</mark>		
R.P.O Obligation in Pecentage	%	13.43	14.25	19.60		

Normalized Gate to Gate Specific Energy Consumption:-0.0593 toe/tonne of equivalent Cement

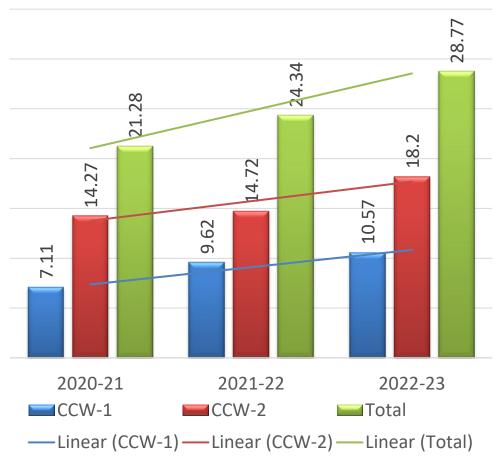
BEE PAT PERFORMANCE

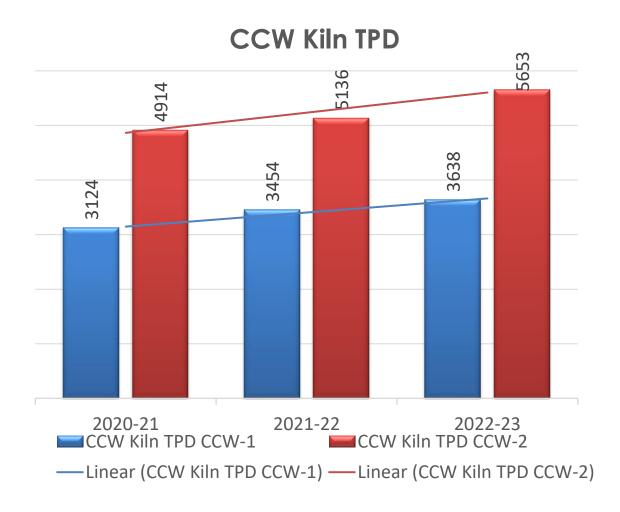



Chanderia Cement works.					
	Energy consumption in (TOE)				
PAT Cycle No.	Target	Achieved			
PAT Cycle-7 (Assessment Year 2022-23 to 24-25)	0.062	0.0593			

Clinkerization SEC (Kwh/T Clinker)

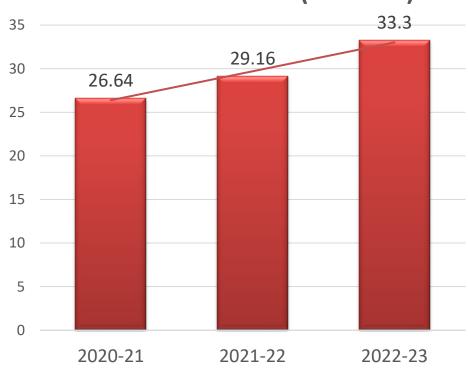
Decrease in CCW
Clinkerization Power by
4.63% From FY 20-21


Decrease in NCCW
Clinkerization Power by
5.02% From FY 20-21

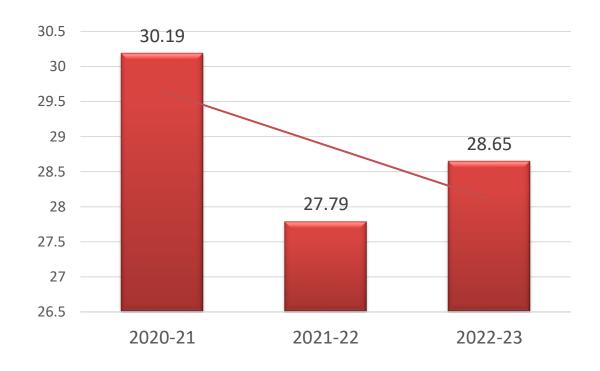

Clinker Production and Kiln TPD

Clinker production (Lac Tons)

Increase in clinker production 35.20% From FY 20-21

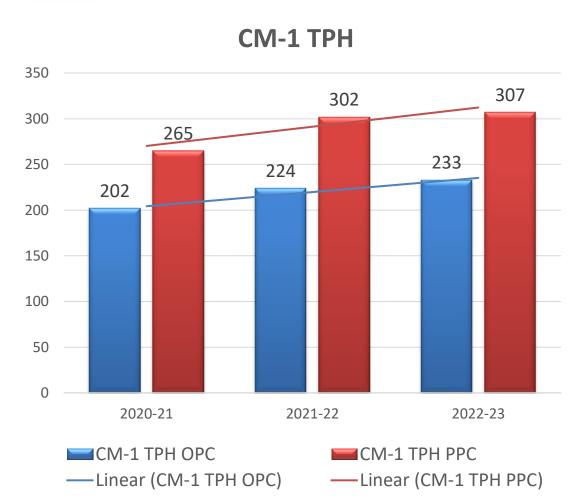

Increase in kiln TPD 16.45% in CCW 1 & 15.04% in NCCW From FY 20-21

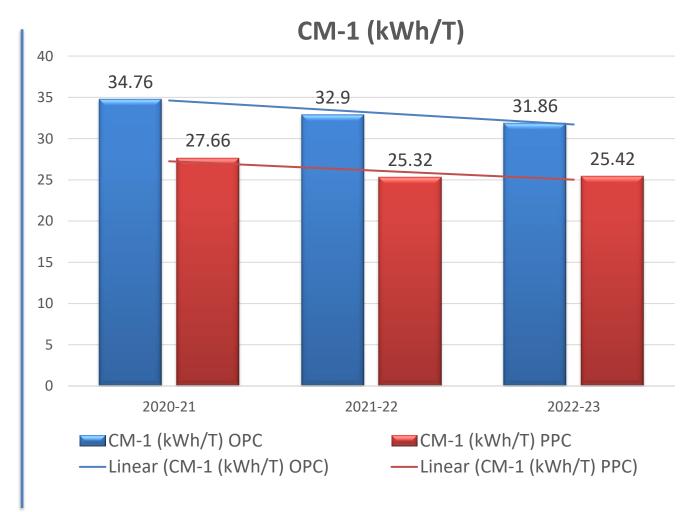
Cement Production and Specific Power


Cement Production (Lac Tons)

Increase in cement production 25% From FY 20-21

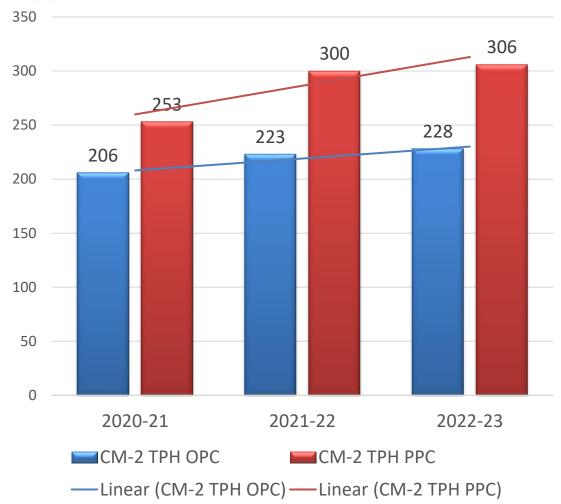
Grinding Power(kWh/T)



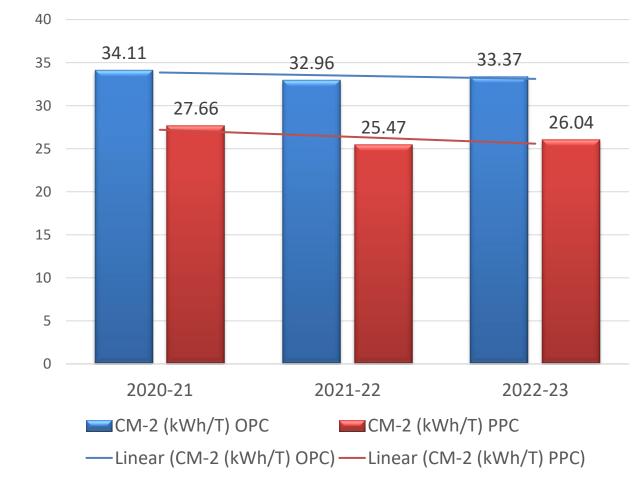

Decrease in Grinding power 5.10% From FY 20-21

Cement Mills Performance

Increase in CM-1 TPH 15.35% in OPC & 15.85% in PPC From FY 20-21

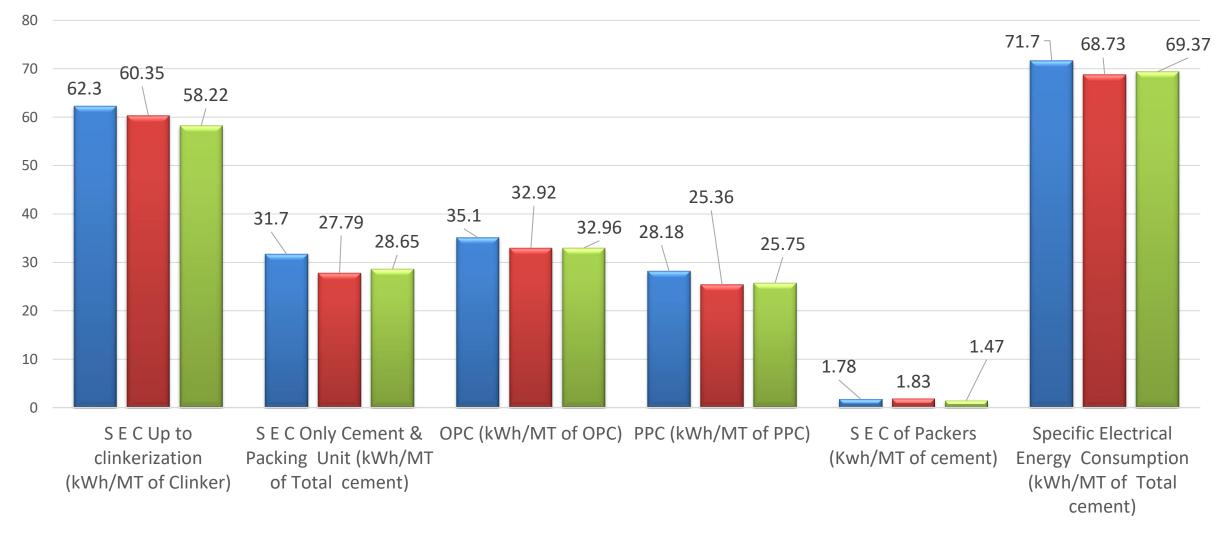

Decrease in CM-1 Power 8.35% in OPC & 8.10% in PPC From FY 20-21

Cement Mills Performance


CM-2 TPH

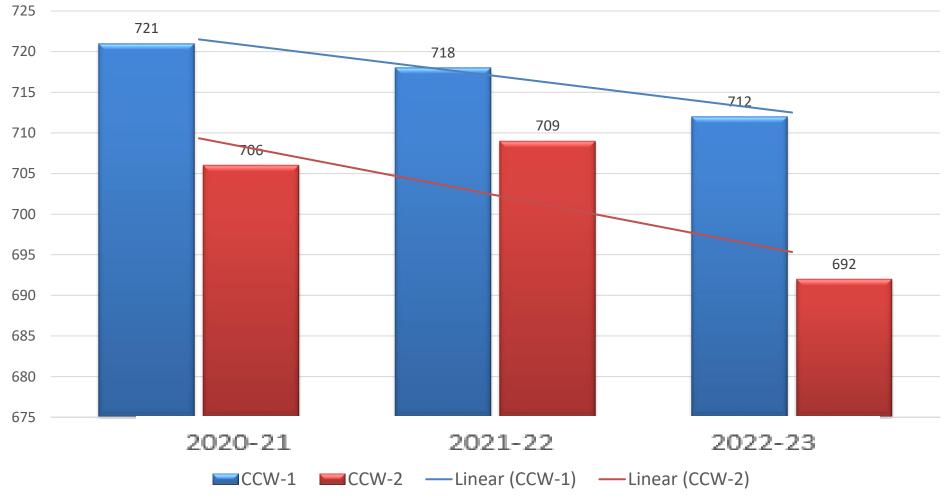
Increased in CM-2 TPH 10.68% in OPC & 20.95% TPH in PPC From FY 20-21

CM-2 (kWh/T)



Decreased in CM-1 Power 01.38% in OPC & 5.86% in PPC From FY 20-

SEC Electrical (Section wise Bifurcation)



Thermal SEC

Decreased Thermal energy 09 Kcal/kg in CCW 1 From FY 20-21

Decreased Thermal energy 14
Kcal/kg in CCW 1 From FY 20-21

Information on Competitors & Benchmark

Name of Competitors	Electrical SEC(kWh/MT of Total cement)	Thermal SEC(kcal/kg of clinker)				
Regional Bench marking						
M/s. J.K.Cement	65.3	678				
M/s. UTCL	64.14	677				
	National Bench marking					
M/s Dalmia Cement	57.2	692				
M/s RCCPL (Maihar)	68	680				
CCW 1	CCW 1 75.70 710					
CCW 2	65.77	690				

Energy Saving projects implemented

Year	No. of Proposals	Investments (Lakh Rs.)	Savings (Lakh Rs.)	Payback months
2019-20	08	2800	987.77	3.0
2020-21	4	Nil	854.248	0
2021-22	2	15,000	1030.79	0

Achievement of annual energy saving 2022-23

Drain at Dataila	Investments	Savings	Day the a old
Project Details	(Rs. In Lakhs)	(Rs. In Lakhs)	Payback months
Reduction of CCW Kiln 1 (Thermal energy)	0	141.78	0
Optimization of CCW Kiln 1 (Electrical energy)			
	0	0.62	0
Reduction of CCW Kiln 2 (Thermal energy) after expansion	0	829.77	0
Optimization of CCW Kiln 2 (Electrical energy) after expansion	0	258.48	0
Utilization of AFR in place of Pet coke in kiln	0	2241.3	0
CCW-Optimization of Cement mill-1 in 43- grade grinding (Electrical)	0	3.43	0
CCW-Optimization of Cement mill-1 in perfect plus grinding (Electrical)	0	31.58	0
Reduction of Roller press power for Raw Meal Grinding(Electrical)	0	70.18	0
Total Saving		3577.16	

Short, Medium and Long term Energy Targets

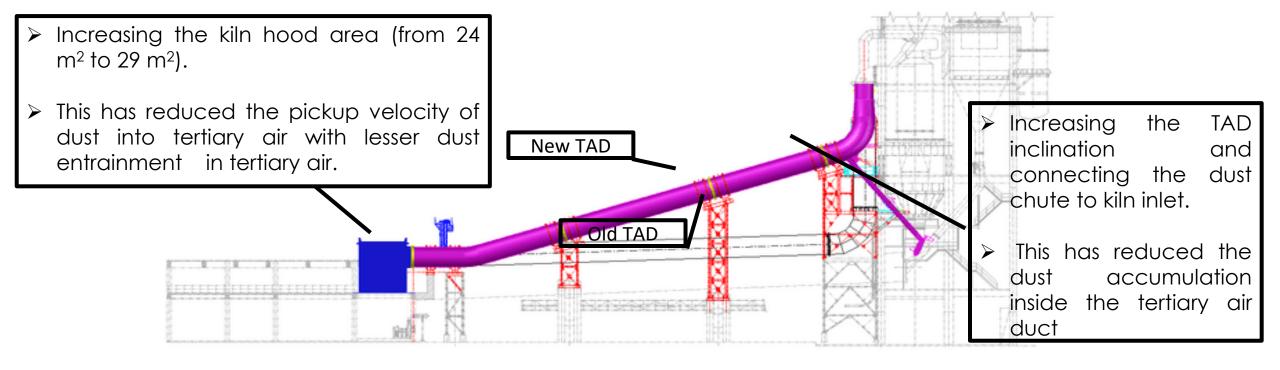
	SHORT TERM		MEDIUM	ITERM		LONG TERM	
	TARGET FOR ELECTRICAL ENERGY REDUCTION						
FY 20)23-24		FY 202	4-25		FY 2025-26	
PARTICULARS	POWER (kWh/TON OF CEMENT)		PARTICULARS	POWER (kWh/TON OF CEMENT)		PARTICULARS	POWER (kWh/TON OF CEMENT)
Existing level	72.27		Existing level	68.70		Existing level	65.00
Target	68.70		Target	65.00		Target	62.00
Reduction expected	3.57		Reduction expected	3.70		Reduction expected	3.00

Projects at a glance

S. No.	Project Description						
1	NCCW Expansion project						
2	CCW TAD & Kiln Hood Modification						
3	1 MW Solar Power Plant enhancement						
4	Replacement of AFBC boiler with CFBC boiler 2x65 TPH						
5	Direct feeding of crushed limestone from mines crusher to OLBC						
6	New 3 rd hopper for clinker wagon loading system						

NCCW Expansion Project

Sanctioned (Rs. In lakhs)	Actual Expenditure (Rs. In lakhs)	Completed on	Benefits Achieved
15324	15002	08.09.21	 Increase in clinker production – 1300 TPD Reduction in Clinkerization power consumption – 3.5 KWH/T Reduction in specific heat consumption – 19 Kcal/Kg of clinker



CCW TAD & Kiln Hood Modification

Sanctioned Amt (Rs. In lakhs)	Actual Expenditure (Rs. In lakhs)	Completed on	Benefits Achieved
662.04	636.42	12.04.22	> Dust falling from TAD bend has been eliminated resulting in safer environment.

Modification carried out

Solar Power Plant – 1MW

Sanctioned Amt (Rs. In lakhs)	Actual Expenditure (Rs. In lakhs)	Completed on	Benefits Achieved
626.86	626.41	30.09.22	> Installed capacity of solar power plant at Chanderia increased from 3 MW to 4 MW.

CFBC Boilers Project

Sanctioned Amt (Rs. In lakhs)	Actual Expenditure (Rs. In lakhs)	Completed on	Benefits	
9077	9066	Boiler-I light-up — 26.08.22	Mitigation of latest emission norms (SOx, NOX, SPM)	
		Boiler-II light-up- 02.09.22	➤ High degree of fuel flexibility	
			> Reduction in generation cost by Rs. 1 / KWH.	

Boilers

Boilers

Boiler-1 Light up Pooja Ceremony

Encon project planned in FY 2023-24

S. No.	Project Name	Project Cost (Rs. in lakhs)	Expected Annual Savings (Rs. in lakhs)	
1.	Installation of AFR co-processing system at CCW	1022.2	200	
2.	Upgradation of AFR co-processing system at NCCW from 10 TPH to 25 TPH	1458.85	400	
3.	Installation of common AFR pre-processing system at Chanderia	3864.16	700	
4.	Up-gradation of linear stacker & feeding belt conveyor (LSB-3)	1135	Productivity increase	
5.	Fine coal transfer from NCCW to CCW	450	185	
6.	Loose cement loading system in tanker at CCW	250	247	
7.	Installation of system for clinker transport from CCW to BCW	275	68	

Projects implemented

Optimization of Vertical Roller Mill and Roller press

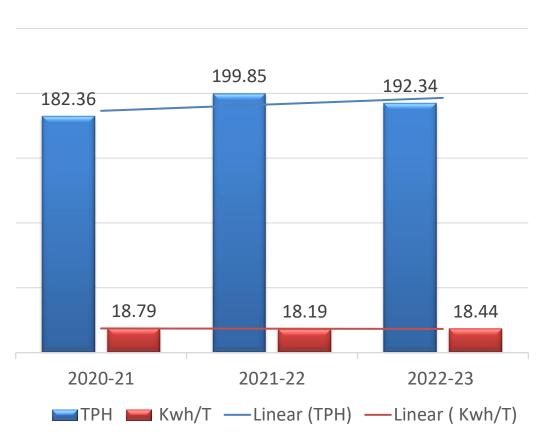
Action Taken:-

We have optimized feed size, earlier it was higher side (18-19 %) sieve on 25 mm. after action by mines team it was 12-13%. it is regularly monitoring.

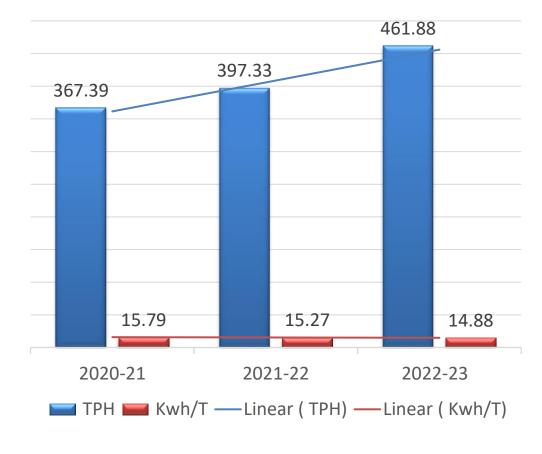
After controlling of feed size end limit tripping has been avoided.

Reduction in False air entry (Up to 13%) and dedicated team formation to monitor in regularly

NCCW Roller Press maximum output achieved up to 509 TPH in a Day



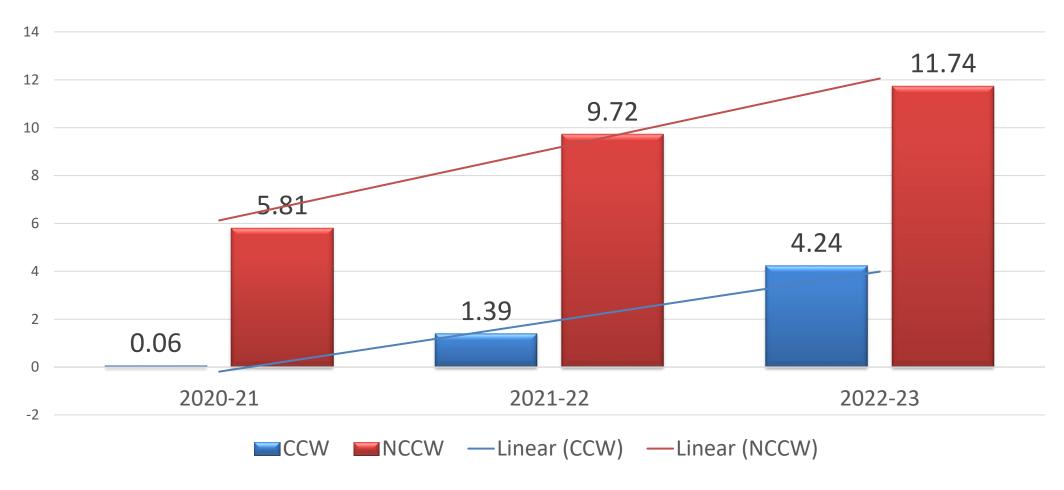
Projects implemented



Optimization of Raw grinding VRM and Roller press

RVRM PERFORMANCE

ROLLER PRESS PERFORMANCE


Waste utilization and management

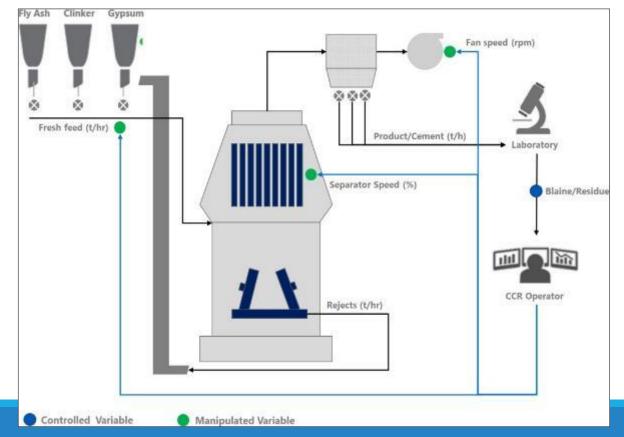
Type of materials (MT)	2020-21	2021-22	2022-23
Carbon Black		4670	6883
Power Plant Ash		-	-
Waste Mix Solids	4924.39	7320	15515
ETP Sludge		137	1439
Mustard Husk, Ground nut Husk	15	2977	17949
TDI Tar	3.8	-	-
Industrial Waste	6	-	-
Waste Mix Solids Non Haz.	0.7	15	-
Saw Dust	77.8	445	62
Liquid Waste	133	4047	5290
Plastic waste (Hazardous+Non hazardous)	9247.74	12629	11269
COAL ASH		-	-
Liquid (LCV)		6	-
Wooden Chips	130.43	38	-
N Hz paperwaste		-	22
Refused Derrived Fuel	18.3	-	1086
FUEL PTRL,PTCK (PTRLM CK),TPP		-	-
Crushed F.M.C.G	121.99	211	547
TOTAL	14679.15	32495	60062

Increase in TSR % 4.18 in CCW 1 & 5.93 in CCW 2 From FY 20-21

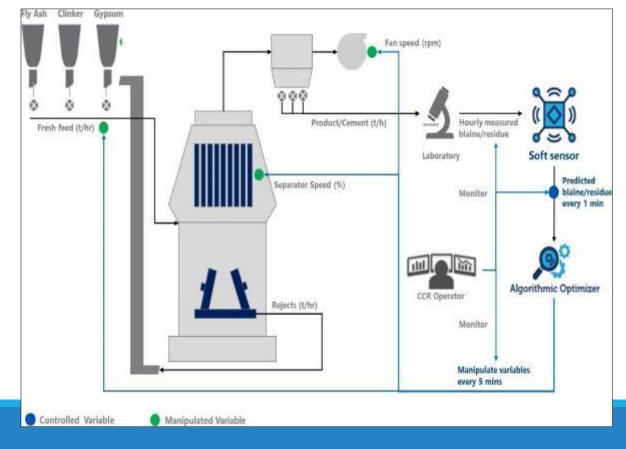
Projects implemented

Installed Solar Power plant of 3.0 MW in FY 2019-20 and upgraded in FY 2022-23 from 3.00 MW To 4.00 MW

Utilization of Renewable Energy Sources



Years	Onsite generation (in Million kwh)	Off-site generation (MW)	Investment made (INR Crores)	Installed Capacity (MW)	Consumption (In million kwh)	RPO obligation
2020-21	58.45		15.00	3	58.07	13.43
2021-22	58.97			3	58.63	14.25
2022-23	71.64		06.27	4	71.10	19.60


Implementation of Mill Intellectual Optimizer (AI)

- **1.Present challenges:** The typical process control of mill in a continuous grinding circuit is shown below. The existing mill circuit has below challenges:
- a. Maintaining Quality parameter through manual intervention.
- b. Manual control of fresh feed, Separator speed and fan flow.

2. Proposed Solution: Mill Intellectual Optimizer with Artificial Intelligence (AI).

The process control of VRM in a closed loop grinding circuit with a proposed solution is shown below:

II - Implementation of Mill Intellectual Optimizer (AI)

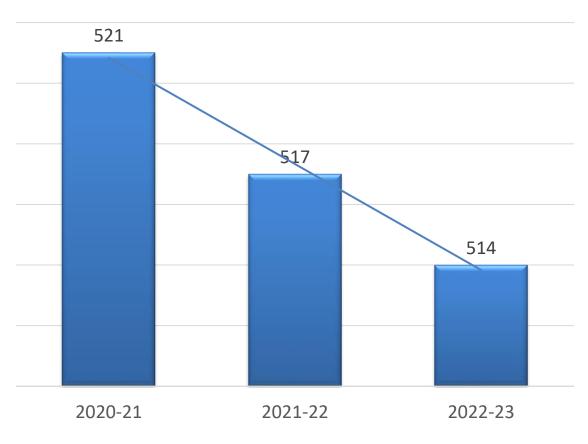
The Mill Intellectual Optimizer (M-IO) has the below modules which works cohesively in a closed loop to control the major Cost variables like Quality, Specific Energy & Productivity of the Mill.

Residue Soft Sensor:

A Soft sensor build using Artificial Intelligence (AI) on the historical mill sensor data, to constantly (every 30 sec/1 min) predict the cement Blaine/Residue like a hardware sensor.

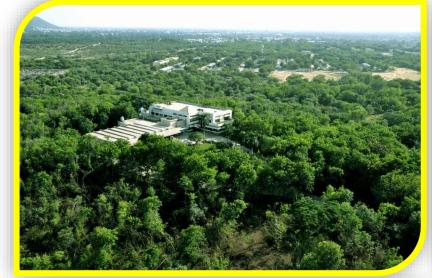
Algorithmic Optimizer:

An Algorithmic optimizer efficiently scan the search space and recommends the global optimum settings for the mill system to operate using the Blaine/residue soft sensor.


GHG inventorization

Green Plantation

Reduction in Emission (kgCO₂ / Ton of Final Product)



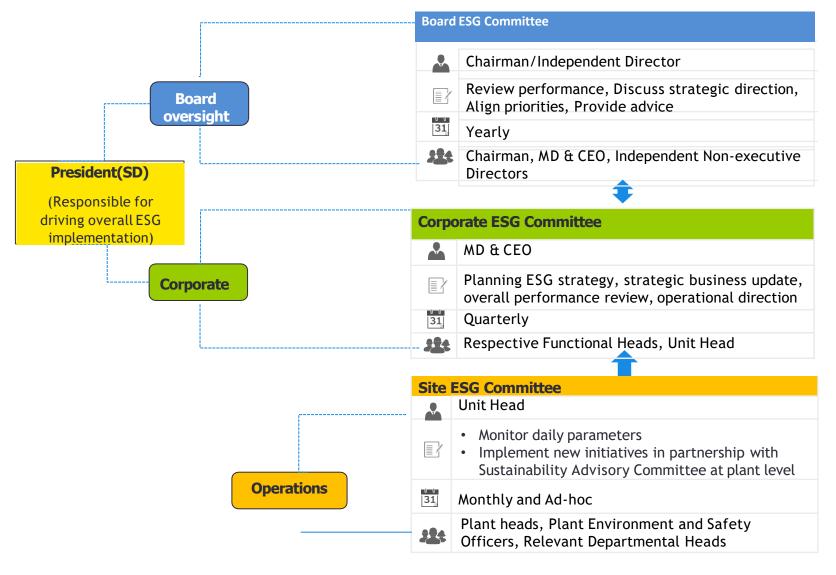
Greenbelt Development at Plant, Colony & Mines

- More than 1.0 Lac number of trees planted at Plant & Colony.
- Area covered under green belt. 79 hec. (~38%) for Plant & Colony.
- ➤ Plantation Target (22-23) -5000 Nos.
- ➤ Target Achieved-2000 Nos
- ➤ Balance under progress-3000 Nos

During last 02 years achieved plantation target of 40,000 tree species at Mines.

VALUE VELOCITY

Targets and Commitment



Targets		
2035 target		
Reduce Specific Scope 1 emission intensity to 411 net kg CO2 per tonne of cementitious		
materials (20% reduction)		
2030 target		
Reduce Specific Scope 1 emission intensity to 500 net kg CO2 per tonne of cementitious materials		
411 kg net CO2 per ton of cementitious material by 2030		

ESG Monitoring structure

Decarbonization levers: Peer comparison

Levers	BCL	Domestic Peer Average	Domestic Peer Best	Domestic Peer Target
Reduce Specific Heat Consumption (Kcal/kg clinker)	779	733	Plant A 717	 Plant A: Doubling energy productivity by 2035 from a 2010 baseline. Plant C: Doubling energy productivity by 2030, using a 2010 baseline.
Proportion of Green Power	22%	17%	Plant B 48%	Plant A: 100 % of electricity requirement through renewables sources by 2050. Plant C: Usage of 100% renewable power under fossil free algoritists initiative by 2020.
Thermal Substitution Rate	4%	6%	Plant C13%	 electricity initiative by 2030 Plant C: Achieving TSR target of 100% by 2035. Plant D: Achieving TSR target of 25% by 2030. Plant E: To achieve a TSR of 15% by 2025 and 20% TSR for key plants. Plant A: Incorporate digital tools, oxy-rich firing and maximise biomass beyond 2025 (TSR – 30%)
Clinker factor	61.8%	63.6%	Plan † D 58.3%	 Plant C: become 100% blended cement company by 2026. Plant D: 30 MnT of waste derived resources to be used by 2030. Plant E: 21 MnT of waste to be reused by 2030.

Carbon ambition – Roadmap to 2030

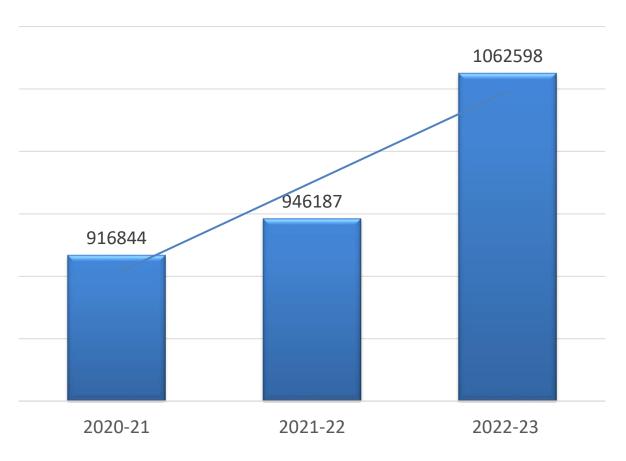
Planned levers:-

- ➤ Enhancing thermal and electrical efficiency
- ➤ Increase WHRS and Solar installation capacity
- ➤ Increasing alternate fuels and biomass use
- ➤ Adoption of vehicles with
- >clean fuel
- ➤ Use of calcined clay

Additional levers:-


- ➤ Carbon Capture Use and Storage (CCUS)
- ➤ Kiln electrification
- ➤ Hydrogen fuel
- >Internal carbon pricing

Green Supply Chain Management



FLY ASH ABSORPTION (%) IN PPC

Increase Fly ash consumption 0.95 % From FY 20-21

FLY ASH ABSORPTION IN QT (IN TONS)

Increase Fly ash consumption 145754

MT From FY 20-21

Learning from CII Energy Award

- The Confederation of Indian Industry (CII) is working to facilitate Industries Achieve World Class Levels In Energy Efficiency.
- Various events and training programs conducted by CII are extended learning and knowledge sharing platforms where we can unearth the best practices, latest technologies and future roadmaps to achieve Excellence in energy efficiency.
- The most conventional and effective way to implement energy efficiency projects is through direct implementation by project beneficiaries.
- As a responsible corporate, Birla corporation limited owns its responsibility towards the Energy Conservation and efficiency. In the journey of Excellence we found CII as most enduring companion. Various Energy saving projects implemented in our plant are replicated from Knowledge sharing programs and events by CII.

Major achievements

- ➤ Achieved ever highest Cement despatch from Chanderia i.e. 38.98 lac tons (Previous best 35.87 lac ton in FY 15-16)
- ➤ Achieved ever highest Perfect plus cement despatch from Chandaria i.e.6.22 lac tons (Previous best 4.71 lac tons in FY 21-22)
- ➤ Achieved ever highest Cement production from Chanderia i.e. 39.09 lac tons (Previous best 35.92 lac tons in FY 15-16)
- ➤ Achieved ever highest Perfect plus cement Production from Chandaria i.e.6.23 lac tons (Previous best 4.67 lac tons in FY 21-22)
- ➤ Achieved ever highest Clinker production from Chanderia i.e. 28.97 Lac ton (Previous best 26.40 lac tons in FY16-17)
- > Achieved ever highest AFR consumption i.e. 60062 MT (Previous best 48786 Ton in FY 2018-19)
- > Achieved ever best thermal energy in CCW i.e. 712 Kcal/Kg clinker (Previous best 718 Kcal/Kg clinker in FY 19-20)
- > Achieved ever best thermal energy in NCCW i.e. 692 Kcal/Kg clinker (Previous best 706 Kcal/Kg clinker in FY 20-21)
- Achieved ever best Clinkerization power in NCCW i.e. 52.89 kWh/T Clinker (Previous best 55.68 kWh/T Clinker in FY 21-22)
- ➤ Achieved ever highest continuous running days for CCW Kiln i.e. 59.0 days & NCCW i.e. 44 days (Previous best CCW 42 days in FY 21-22 & NCCW 30 days in FY 20-21)

Major achievements

- > Achieved ever highest fly ash absorption in BCW PPC i.e. 33.31% (Previous best 33.02 % in FY 18-19)
- > Achieved ever highest fly ash absorption in CCW PPC i.e. 34.48% (Previous best 33.88% in FY 18-19)
- > Achieved ever highest fly ash absorption in Perfect Plus 32.52 % (Previous best 31.56% in FY 21-22)
- ➤ Achieved ever best performance of Raw grinding Roller press-471 TPH, 14.88 kWh/T Power (Previous best 397 TPH and 15.27 kWh/T Power in FY 21-22)
- > Achieved ever highest TPH in PPC Grade i.e. 306 TPH (Previous best 301 TPH in FY 21-22)
- > Achieved ever highest TPH in Perfect plus i.e. 242 TPH (Previous best 228 TPH in FY 21-22)
- Achieved ever lowest Cement grinding power in Prefect plus i.e. 32.13 kWh/T (Previous best 33.48 Unit/ton Cement in FY 21-22)
- > Achieved ever highest mines Production i.e. 35.76 lacs tons (Previous best 28.21 lacs tons in FY 21-22)
- > Achieved ever highest dispatch of limestone to plant since installation of OLBC i.e 34.29 lacs tones (Previous best 28.81 lacs tons in FY 21-22

Details of Energy Awards

NAME OF THE UNIT	NAME OF AWARD	AWARD FOR THE YEAR	REMARKS
BCW/CCW	Rajasthan Energy Conservation Award – 2019 Under cement category for excellent efforts in energy conservation	2018-19	By Government Energy Department, Jaipur In December, 2019
BCW/CCW	Excellence in Energy Management – 2019	2018-19	By CII, Hyderabad In November, 2019
BCW/CCW	National Energy Management Award – 2019 For excellence in energy conservation	2018-19	By SEEM, 2019
BCW/CCW	Best Improvement in Electrical Energy Performance 18-19	2018-19	By NCCBM International In November, 2019
BCW/CCW	Five set of papers presented at NCCBM International seminar In November, 2019, regarding saving of energy / Plant initiatives.	2018-19	Presented at NCCBM International seminar November, 2019
BCW/CCW	Certificate of Excellence Inmaintaining harmonious employer-employee relations, skill development, CSR	2018-19	By The Employers' Association of Rajasthan at Jaipur, Rajasthan In November, 2019
BCW/CCW	Silver Award & SEEM National Energy Management Award – 2019 Indian Energy Enclave – 2019 for excellent efforts in energy conservation	2018-19	By IICC, New Delhi In October, 2019
BCW/CCW	For fly ash utilization, 2nd Award, during "fly ash utilization conference 2020"	2018-19	By Mission Energy Foundation in February, 2020

- ➤ Birla Corporation Limited (Chanderia Unit) won **Gold award** under **SEEM National Energy Management Award 2021** in the field of energy consumption and management held at New Delhi on 16th September 2022 during **Indian Energy Conclave 2022**.
- ➤ Birla Corporation Limited (Chanderia Unit) won **Energy Efficient Unit award** by **Confederation of Indian industry (CII)** in the field of energy consumption and management held at New Delhi on 21st September 2022 during 23rd National Award for Excellence in Energy Management 2022.

- We have won Awards in five categories in AFR utilization:-
 - Average TSR % (2016 -2020) : Gold Medal
 - TSR % achieved in 2021 : Gold Medal
 - Plastic & RDF Consumption in 2021 : Gold Medal
 - Volume of AFR Co-processed in 2021 : Gold Medal
 - Average Plastic & RDF Consumption average between 2016 & 2020: Silver Medal
- We have won "Second Best Award for Total Quality Excellence" for Integrated Cement Plants for the year 2019-22 by NCCBM, Ballabgarh (Haryana) on 09th Dec-22.

Overall Performance

Afforestation

Publicity & Propaganda

First

Environment Monitoring

Second

ACCO MICHAEL PRIZES

PRINT ACCO SERVE ACCORDANCE ACCORD

Received Environment Protection Award - 2022 on 23.08.2022 by Greentech Foundation at Guwahati

BCW Mines won 4 prizes during 32nd Mines Environment & Mineral Conservation Week 2021-22 on 25.08.2022

Award Name:

Govt. Of Rajasthan's State Level Bhamashah Award-2022 Category: "Shiksha Bhushan"

For EXCELLENCE WORK IN EDUCAITON

26th STATE-LEVEL BHAMASHAH SMMAN SAMAN SAMAROH

Date: 10th October 2022

Award Name: APEX India CSR Excellence Award-2021

Category: "Gold Award"

For Integrated Village Development Programme Date: 5th May 2022

Award by Honourable Dr. B D Kalla (State Education Minister-Primary & Upper Education Govt. of Rajasthan) and Special Guest Sh. Rajendra Singh Yadav (Minister of State for Higher Education), Dr. Subhash Garg (State Minister-Technical Education) and Govt. Official-Education Deptt.)

CSR Award for Corporate Governance & Sustainability Vision

Award Name:

Corporate Governance & Sustainability Vision Award-2023

Category: "Corporate Social Responsibility (CSR) Ranked: 1st

Awarded to: Birla Corporation Limited-Chanderia Unit

By Indian Chamber of Commerce (ICC) at New Delhi

Date: 24th February 2023

Appreciation Received by Govt. of Rajasthan

Appreciation by:

District Collector & Health Department Office, Chittorgarh Govt. of Rajasthan

Category: Corporate Support
Awarded to : Birla Corporation Limited-Chanderia
Unit

For Initiative to T.B. Patient on Nutrition Support for Six Months

at Collector Office, Chittorgarh

Date: 20th March 2023

Award Name: 17th CII-ITC Sustainability Awards - 2022

For Commendation for Significant Achievement in Corporate Excellence

Category: Manufacturing Sector

"Under Commendable Results from Deployment of Policy & Processes on the journey to
Excellence in Sustainable Business"

Awarded to: Birla Corporation Limited

Date: 10th May 2023 at Delhi

It was presented by Shri Nitin Gadkari, Minister for Road Transport & Highways. The award was received by Shri Devesh Kumar Mishra, Unit Head, Chanderia Unit and Shri Debashish Choudhury, Vice President, Corporate Affairs during 17th CII-ITC Sustainability Awards Ceremony at New Delhi.

Thanks

Representing team

1.Sh Keshav Krishan Pandey

Keshav.pandey@birlacorp.com

2.Sh Narpat Anjana

Narpatsingh.Anjana@birlacorp.com

4 Sh Nitin Gupta

Nitin.gupta@birlacorp.com

3 Sh Vikas Chechani

vikas.chechani@birlacorp.com

Any Questions